Льготный консультант. Ветераны. Пенсионеры. Инвалиды. Дети. Семья. Новости

Что такое о днк. Днк-анализ как рутинное исследование, или о чем способна рассказать ваша генетическая карта. Если у нас есть ДНК, РНК тогда зачем

Научились выделять из клетки, то вскоре убедились, что ведёт она себя как обычный линейный полимер. У неё было 2 конца, и никто не сомневался, что это обычная линейная цепь. Правда, возникали сомнения, какие гены считать концевыми. Поэтому генетические карты рисовали в виде кольцевых диаграмм. Впоследствии оказалось, что именно такие карты и отражают истинное строение молекул.

Изучая маленькие ДНК онкогенных вирусов, вызывающих рак, специалисты обнаружили, что некоторые из них замкнуты в кольца. Однако большого интереса это не вызвало. Мало ли какая форма у молекул в вирусах. Но всё-таки кольцевая молекула ДНК вскоре заставила обратить на себя внимание. Дело в том, что даже если маленькая ДНК в вирусной частице линейна, то после проникновения вируса в клетку, замыкается в кольцо.

Оказалось, что перед началом репликации линейная молекула приобретает репликативную форму. В ней обе комплементарные цепи образуют кольца. Такая форма оказалась у ДНК бактерий кишечной палочки. Плазмиды всегда кольцевые. Одним словом, главная молекула в прокариотической клетке всегда имеет кольцевую форму. А вот, что касается эукариот, то её хромосомная ДНК всегда линейная . Отсюда возникает закономерный вопрос: зачем прокариотической клетке замыкать главную молекулу в кольцо?

Сверхспирализация

В главной молекуле комплементарные цепи обвивают друг друга, как лианы. Когда они замыкаются, то два кольца сцепляются так, что их невозможно развести. Существующий в ней порядок зацепления 2-х цепей не может измениться. При этом замкнутая молекула ДНК обладает особыми свойствами, которые резко отличаются от линейной молекулы. Дело же в том, что в кольцевом образовании запасается впрок энергия в виде так называемых сверхвитков.

Отсюда специалисты сделали вывод, что сверхспирализация не исключение, а правило. Но разговор-то шёл о выделенных из клеток молекулах. А какую форму они имеют внутри клеток? Выяснилось, что там они совсем другие. То есть сверхспирализация представляет собой реакцию на насильственное извлечение главной молекулы из родной стихии. Ведь условия, в которых находится ДНК внутри клетки, кардинально отличаются от условий вне её.

В клетке главная молекула связана с белками, которые раскрывают двойную спираль и расплетают в этих местах 2 цепи. Но если молекулу очистить от белков, то она тут же перейдёт в сверхспирализованное состояние. Так вначале объяснили явление сверхспирализации, не придав ему никакого биологического значения. Однако впоследствии выяснилось, что всё не так просто.

В наши дни существует много гипотез о роли сверхспирализации в работе клетки. Мы рассмотрим одну из них, которая кажется наиболее простой и правдоподобной. Возникла эта гипотеза на том основании, что перед тем, как начать удваиваться, главная молекула закручивается в сверхспираль. Но для процесса репликации такая спираль не нужна. Более того, часто перед этим процессом одна из цепей ДНК рвётся. Разрыв делает специальный белок. Получается бессмыслица: один белок закручивает молекулу в сверхспираль, а другой немедленно ликвидирует.

Объяснение этому может быть только одно: клетка проверяет свою главную молекулу на целостность сахаро-фосфатной цепи . То есть имеет место своеобразный технический контроль на молекулярном уровне. Иными словами, в клетке существует репарирующая система, которая залечивает повреждения. Для этого у неё имеется множество ферментов. Нуклеазы рвут цепь ДНК вблизи повреждённого нуклеотида. Другие ферменты удаляют испорченное звено. При этом генетическая информация сохраняется, и удалённая часть цепи восстанавливается.

Таким образом, клетка постоянно залечивает раны, которые наносятся главной молекуле. Что случится, если одновременно с ремонтом начнётся процесс репликации? Дойдя до разрыва цепи, полимераза, осуществляющая репликацию, остановится. В результате не сможет идти ни один, ни другой процесс. Это катастрофа. Поэтому репликацию следует начинать только после завершения ремонта. А как в этом убедиться?

Вот тут на помощь и приходи сверхспирализация. Ведь она возможна лишь в той главной молекуле, у которой обе цепи целые. А проверить это очень просто. У сверхспирали гораздо легче развести комплементарные цепочки, то есть раскрыть двойную спираль. Если же цепь не разводится, то необходимо ждать, так как главная молекула пока ещё не готова к воспроизведению. Отсюда следует вывод: кольцевая молекула ДНК обеспечивает сверхспирализацию. Ведь в линейной цепи её осуществить невозможно .

По своему химическому строению ДНК (дезоксирибонуклеиновая кислота ) является биополимером , мономерами которого являются нуклеотиды . То есть ДНК - это полинуклеотид . Причем молекула ДНК обычно состоит из двух цепей, закрученных друг относительно друга по винтовой линии (часто говорят «спирально закрученных») и соединенных между собой водородными связями.

Цепочки могут быть закручены как в левую, так и в правую (чаще всего) сторону.

У некоторых вирусов ДНК состоит из одной цепи.

Каждый нуклеотид ДНК состоит из 1) азотистого основания, 2) дезоксирибозы, 3) остатка фосфорной кислоты.

Двойная правозакрученная спираль ДНК

В состав ДНК входят следующие: аденин , гуанин , тимин и цитозин . Аденин и гуанин относятся к пуринам , а тимин и цитозин - к пиримидинам . Иногда в состав ДНК входит урацил, который обычно характерен для РНК , где замещает тимин.

Азотистые основания одной цепи молекулы ДНК соединяются с азотистыми основаниями другой строго по принципу комплементарности: аденин только с тимином (образуют между собой две водородные связи), а гуанин только с цитозином (три связи).

Азотистое основание в самом нуклеотиде соединено с первым атомом углерода циклической формы дезоксирибозы , которая является пентозой (углеводом с пятью атомами углерода). Связь является ковалентной, гликозидной (C-N). В отличие от рибозы у дезоксирибозы отсутствует одна из гидроксильных групп. Кольцо дезоксирибозы формируют четыре атома углерода и один атом кислорода. Пятый атом углерода находится вне кольца и соединен через атом кислорода с остатком фосфорной кислоты. Также через атом кислорода у третьего атома углерода присоединяется остаток фосфорной кислоты соседнего нуклеотида.

Таким образом, в одной цепи ДНК соседние нуклеотиды связаны между собой ковалентными связями между дезоксирибозой и фосфорной кислотой (фосфодиэфирная связь). Образуется фосфат-дезоксирибозный остов. Перпендикулярно ему, навстречу другой цепочке ДНК, направлены азотистые основания, которые соединяются с основаниями второй цепочки водородными связями.

Строение ДНК таково, что остовы соединенных водородными связями цепочек направлены в разные стороны (говорят «разнонаправлены», «антипараллельны»). С той стороны, где одна заканчивается фосфорной кислотой, соединенной с пятым атомом углерода дезоксирибозы, другая заканчивается «свободным» третьим атомом углерода. То есть остов одной цепочки перевернут как бы с ног на голову относительно другой. Таким образом, в строении цепочек ДНК различают 5"-концы и 3"-концы.

При репликации (удвоении) ДНК синтез новых цепочек всегда идет от их 5-го конца к третьему, так как новые нуклеотиды могут присоединяться только к свободному третьему концу.

В конечном итоге (опосредованно через РНК) каждые идущие подряд три нуклеотида в цепи ДНК кодируют одну аминокислоту белка.

Открытие строения молекулы ДНК произошло в 1953 году благодаря работам Ф. Крика и Д. Уотсона (чему также способствовали ранние работы других ученых). Хотя как химическое вещество ДНК было известно еще в XIX веке. В 40-х годах XX века стало ясно, что именно ДНК является носителем генетической информации.

Двойная спираль считается вторичной структурой молекулы ДНК. У клетках эукариот подавляющее количество ДНК находится в хромосомах , где связана с белками и другими веществами, а также подвергается более плотной упаковке.

Все живые существа на нашей планете существенно отличаются друг от друга из-за того, что каждому виду пришлось приспосабливаться, выживать и размножаться в разных условиях: на суше и в воде, в тропиках или во льдах. Но при этом все внутренние базовые механизмы, определяющие строение всех живых существ, во многом очень похожи между собой.

Все живые организмы состоят их клеток. Примитивные организмы состоят из одной клетки, другие из большого количества. В каждой клетке любого из живых существ содержится информация, которая необходима для создания клетки, размножения или видоизменения. Эта информация содержится в нуклеиновых кислотах, которые находятся в каждой клетке. Клетка – это структурная единица организма. Организм человека состоит примерно из 1014 клеток. Все клетки имеют принципиально одинаковое строение, но функции у них разные. Именно нуклеиновые кислоты определяют нормальную жизнедеятельность клеток и всего организма. Любые отклонения в строении нуклеиновых кислот приводят к изменению клеточной организации, к изменению физиологических процессов и жизнеспособности клеток в целом. Нуклеиновая кислота это биологический полимер, который состоит из «кирпичиков» — нуклеотидов.

Структура нуклеотида


Нуклеотиды представляют собой тоже сложные строение, которое состоит из трех частей. Это азотистые соединения, углеводная единица (сахар) и фосфорная кислота. Различают 4 вида нуклеотидов по количеству азотистых оснований — аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). Между собой нуклеотиды соединяются химической связью, которая называется фосфорэфирная связь. Соединенные фосфорэфирной связью нуклеотиды формируют длинную нить. Соединенные в определенном порядке две такие линии, состоящие из нуклеотидов, формируют большую спиральную молекулу дезоксирибонуклеиновой кислоты – ДНК.

Строение молекулы ДНК

Как было отмечено выше состоит из двух цепей нуклеотидов, которые закручены спирально друг против друга. Спиральное закручивание нитей нуклеотидов дает возможность компактно разместить их на небольшом участке. Интересным есть и тот факт, что нуклеотиды в двух цепях расположены комплементарно. Напротив друг от друга могут располагаться только определенные типы нуклеотидов (перед аденином всегда стоит тимин, а цитозин всегда напротив гуанина). Такие пары нуклеотидов называют комплементарными. Комплементарные пары образуют химическую связь.

В развернутом виде длина всей ДНК, заключенной в ядро клетки составляет 5 метров. Кроме этого, спиральные нити нуклеотидов закручиваются на «катушки» — гистоновые белки. Считывание генетической (наследственной) информации всегда происходит только с развернутых нитей ДНК! В случае возникновения считывания информации с молекулы ДНК происходит процесс раскручивания спиральных нитей нуклеотидов с гистоновых белков. ДНК — это библиотека информации. Предположим, организму требуется определенный белок – инсулин. Для его синтеза определенные клетки высвобождают в кровь определенные белки, которые достигают фабрики инсулина поджелудочной железы. Эти сигнальные белки получают другие белки, находящиеся в ядре клетки и дают команду расплести тот участок молекулы ДНК, который кодирует инсулин и начинается процесс синтеза этого фермента. При поступлении нужного количества инсулина в клетки поджелудочной железы поступают другие белки. Они дают сигнал об остановке сигнала синтеза инсулина. Другими словами ген это книга, которую читатель изучил и выполнил определенную инструкцию и после этого вернул ее в библиотеку. В состав ДНК входят гены.

Что такое ген

Строго определенный участок молекулы ДНК, в котором находится строго определенное число нуклеотидов, расположенных в свою очередь в строго определенной комбинации называется геном. Следует отметить, что конкретному гену отведено конкретное место в молекуле ДНК, которое поменять нельзя. Для каждого гена определенная последовательность нуклеотидов является уникальной. Гены определяют цвет глаз, волос, группу крови и множество других функций организма человека.

ДНК человека содержит от 25 до 40 тысяч генов. ДНК червяка, к примеру, от 12 до 20 тысяч генов.

Последовательность нуклеотидов в генах разных видов живых существ существенно отличается друг от друга. Влияние внешней среды и ряд других факторов, многие из которых пока остаются неизвестными, могут менять последовательность нуклеотидов, а следовательно изменять и гены. Гены в свою очередь влияют на кодирование белков. Данный процесс принято называть мутацией. Некоторые мутации повышают приспособленность к окружающей среде, а некоторые представляют опасность для жизни: это может быть недоразвитие внутренних органов или деформация скелета

Что такое хромосома?

Совокупность всех генов, какого либо живого существа называют геномом. Для более компактного расположения генома в ДНК Природа разбила геном на своеобразные молекулы ДНК. Геном клетки человека разбит на 46 пар молекул ДНК. Одна такая пара молекул ДНК называется хромосомой. Каждой такой паре молекул ДНК (хромосоме) присущ определенный набор генов. Различают хромосомы по длине и форме. Наиболее распространенные формы хромосом бывают в виде Х или Y. Две одинаковые хромосомы по форме называются парными. Таких в клетке организма человека насчитывается 23 пары. из рисунка видно, что относительно после точки пересечения одни концы нитей длиннее, а другие короче. Хромосомы между собой отличаются по выполняемым функциям и размерам. Часть хромосом определяют поведенческие и внешние признаки особи. Другие – определяют, кем будет человек мужчиной или женщиной. Такие хромосомы называют половыми– Х (икс) и У (игрек). Сочетание хромосом ХХ (икс — икс) – создают женщину, а если ХУ (икс — игрек) – получается мужчина. Повреждения хромосом называют мутациями. Мутации, которые приводят к болезням, называют отрицательными, к образованию полезных свойств – положительными.

Что такое РНК (рибонуклеиновая кислота)


В природе существует еще один вид нуклеиновых кислот – РНК (рибонуклеиновая кислота). По строению РНК отличается от ДНК тем, что она представлена одной нитью нуклеотидов. Значение РНК в клетке заключается в том, что она служит для переноса информации с ДНК в определенные места клетки, где происходит синтез белков. РНК, в отличие от ДНК, может проходить через мембрану ядра клетки. ДНК может находиться только в ядре клетки.

Совсем недавно в микробиологии и генетике произошел существенный прорыв, повлиявший на науку. Почти полностью раскодировали структуру ДНК. Расшифровка информации анализировалась, разрабатывались и вводились новые методы раскодировки молекулы, а знания стали эффективно применять на практике. В статье приводится общая информация о ДНК.

История

Нуклеиновые кислоты начали изучать в девятнадцатом веке. Фридрих Мишер в 1868 году впервые выделил из клеток нуклеин, который позже получил название дезоксирибонуклеиновой кислоты — ДНК. Однако в то время к открытию отнеслись довольно скептически и молекуле не придавалось особого значения. Лишь в середине двадцатого века благодаря опытам на мышах О.Эвери и Ф.Гриффита произошел коренной переворот. При изучении трансформации бактерий выяснилось, что за этот процесс отвечала молекула ДНК.

Позже Р.Франклин случайно использовала рентгеновское излучение для исследования структуры кристаллов, благодаря чему удалось сделать фотографию ДНК. На основании этого в 1953 году был сформулирован принцип саморепликации, а также воспроизводства жизни на Земле.

ДНК — состав

ДНК состоит из дезоксирибонуклеиновых и рибонуклеиновых кислот. Биополимеры состоят, в свою очередь, из мономеров, или нуклеотидов, содержащих три компонента, прочно соединенных между собой химическими связями.

Нуклеотиды ДНК содержат присоединенный к молекуле пятиуглеродный сахар из азотистого основания (аденина, гуанина, цитозина, тимина) с одной стороны и остатка фосфорной кислоты — с другой. Они соединены в длинные цепи.

В структуру ДНК входят две нити, соединяющиеся водородными связями. Они получили название двойной спирали. Такая структура имеется только в молекуле ДНК. В ней против одного основания азота в одной цепи лежит определенное основание в другой. Такие пары называются комплементарными, то есть дополняющими друг друга.

Геном человека

Огромное количество информации содержится всего в одной молекуле ДНК. Формула ее представляет собой строчку из заглавных букв названия пептидов. Это генетический код, то есть последовательность нуклеотидов, присущая определенному человеку.

Геном людей был открыт в 2001 году. Но полную картину представили миру лишь в 2007 году. Проект, начавшийся в 1990 году, затрагивал социальные, этические и даже моральные аспекты жизни человека. К 2003 году код был расшифрован на 99,99%. Поэтому и сегодня еще имеется неполная ясность процесса. Но ученые считают эту долю процента несущественным минусом.

Значение открытия

За наследственность отвечает ДНК. Расшифровка дает возможность изучения развития и жизни любого земного организма, и вмешательство врачей сегодня может немного изменить заложенные в молекуле процессы.

При наличии кода ДНК расшифровка его позволит врачу определить различные болезни, которые могут возникнуть у человека, прогнозировать их течение и подбирать лекарственные средства.

И по сей день еще не произошло полного понимания того, что значит раскодирование молекулы. Благодаря этому, например, стало известно, что неандертальцы умели разговаривать и не болели шизофренией и синдромом Дауна.

Молекулы ДНК у людей фактически одинаковы. Замена азотистых оснований в них может привести к мутациям и болезням. Хотя иногда наблюдается лишь предрасположенность к ним, и если человек не будет подвержен вредным привычкам, он сможет избежать их появления.

Медики знают уже пять тысяч заболеваний (многие из которых приводят к инвалидности), которые передаются посредством ДНК. Расшифровка молекулы позволит предупредить людей о предрасположенности. Тогда человек будет предпринимать профилактические меры, чтобы болезнь не развивалась. Так как генотип человека с возрастом не изменяется, достаточно один раз сдать анализы.

Технологии сегодня помогают выявить способности человека вплоть до вычисления оптимальных физических нагрузок, эффективного наращивания мышц и быстрого сброса лишних килограммов.

Изучение ДНК развивает уровень микробиологии, которая занимается вирусами, грибами и бактериями, вызывающими инфекции у человека. Благодаря этому такие отрасли, как биофармацевтика, пищевое, косметическое производство, экологический мониторинг и другие получают новый толчок для своего развития.

После открытия принципа молекулярной организации такого вещества, как ДНК в 1953 году, начала развиваться молекулярная биология. Далее в процессе исследований ученые выяснили как рекомбенируется ДНК, ее состав и как устроен наш человеческий геном.

Каждый день на молекулярном уровне происходят сложнейшие процессы. Как устроена молекула ДНК, из чего она состоит? И какую роль играют в клетке молекулы ДНК? Расскажем подробно обо всех процессах, происходящих внутри двойной цепи.

Что такое наследственная информация?

Итак, с чего все начиналось? Еще в 1868 нашли в ядрах бактерий. А в 1928 г. Н. Кольцов выдвинул теорию о том, что именно в ДНК зашифрована вся генетическая информация о живом организме. Затем Дж. Уотсон и Ф. Крик нашли модель всем теперь известной спирали ДНК в 1953 году, за что заслужено получили признание и награду — Нобелевскую премию.

Что такое вообще ДНК? Это вещество состоит из 2 объединенных нитей, точнее спиралей. Участок такой цепочки с определенной информацией называется геном.

В ДНК хранится вся информация о том, что за белки будут формироваться и в каком порядке. Макромолекула ДНК — это материальный носитель невероятно объемной информации, которая записана строгой последовательностью отдельных кирпичиков — нуклеотидов. Всего нуклеотидов 4, они дополняют друг друга химически и геометрически. Этот принцип дополнения, или комплементарности, в науке будет описан позже. Это правило играет ключевую роль в кодировке и декодировании генетической информации.

Так как нить ДНК невероятно длинная, повторений в этой последовательности не бывает. У каждого живого существа собственная уникальная цепочка ДНК.

Функции ДНК

К функциям относятся хранение наследственной информации и ее передача потомству. Без этой функции геном вида не мог бы сохраняться и развиваться на протяжении тысячелетий. Организмы, которые претерпели серьезные мутации генов, чаще не выживают или теряют способность производить потомство. Так происходит природная защита от вырождения вида.

Еще одна существенно важная функция — реализация хранимой информации. Клетка не может создать ни одного жизненно важного белка без тех инструкций, которые хранятся в двойной цепочке.

Состав нуклеиновых кислот

Сейчас уже достоверно известно, из чего состоят сами нуклеотиды — кирпичики ДНК. В их состав входят 3 вещества:

  • Ортофосфорная кислота.
  • Азотистое основание. Пиримидиновые основания — которые имеют только одно кольцо. К ним относят тимин и цитозин. Пуриновые основания, в составе которых присутствуют 2 кольца. Это гуанин и аденин.
  • Сахароза. В составе ДНК — дезоксирибоза, В РНК — рибоза.

Число нуклеотидов всегда равно числу азотистых оснований. В специальных лабораториях расщепляют нуклеотид и выделяют из него азотистое основание. Так изучают отдельные свойства этих нуклеотидов и возможные мутации в них.

Уровни организации наследственной информации

Разделяют 3 уровня организации: генный, хромосомный и геномный. Вся информация, нужная для синтеза нового белка, содержится на небольшом участке цепочки — гене. То есть ген считается низший и самый простой уровень кодировки информации.

Гены, в свою очередь, собраны в хромосомы. Благодаря такой организации носителя наследственного материала группы признаков по определенным законам чередуются и передаются от одного поколения к другому. Надо заметить, генов в организме невероятно много, но информация не теряется, даже когда много раз рекомбенируется.

Разделяют несколько видов генов:

  • по функциональному назначению выделяют 2 типа: структурные и регуляторные последовательности;
  • по влиянию на процессы, протекающие в клетке, различают: супервитальные, летальные, условно летальные гены, а также гены мутаторы и антимутаторы.

Располагаются гены вдоль хромосомы в линейном порядке. В хромосомах информация сфокусирована не вразброс, существует определенный порядок. Существует даже карта, в которой отображены позиции, или локусы генов. Например, известно, что в хромосоме № 18 зашифрованы данные о цвете глаз ребенка .

А что же такое геном? Так называют всю совокупность нуклеотидных последовательностей в клетке организма. Геном характеризует целый вид, а не отдельную особь.

Каков генетический код человека?

Дело в том, что весь огромнейший потенциал человеческого развития заложен уже в период зачатия. Вся наследственная информация, которая необходима для развития зиготы и роста ребенка уже после рождения, зашифрована в генах. Участки ДНК и есть самые основные носители наследственной информации.

У человека 46 хромосом, или 22 соматические пары плюс по одной определяющей пол хромосоме от каждого родителя. Этот диплоидный набор хромосом кодирует весь физический облик человека, его умственные и физические способности и предрасположенность к заболеваниям. Соматические хромосомы внешне неразличимы, но несут они разную информацию, так как одна из них от отца, другая - от матери.

Мужской код отличается от женского последней парой хромосом — ХУ. Женский диплоидный набор — это последняя пара, ХХ. Мужчинам достается одна Х-хромосома от биологической матери, и затем она передается дочерям. Половая У-хромосома передается сыновьям.

Хромосомы человека значительно разнятся по размеру. Например, самая маленькая пара хромосом - №17. А самая большая пара - 1 и 3.

Диаметр двойной спирали у человека - всего 2 нм. ДНК настолько плотно закручена, что вмещается в маленьком ядре клетки, хотя ее длина будет достигать 2 метров, если ее раскрутить. Длина спирали — это сотни миллионов нуклеотидов.

Как передается генетический код?

Итак, какую роль играют в клетке молекулы ДНК при делении? Гены — носители наследственной информации - находятся внутри каждой клетки организма. Чтобы передать свой код дочернему организму, многие существа делят свое ДНК на 2 одинаковые спирали. Это называется репликацией. В процессе репликации ДНК расплетается и специальные «машины» дополняют каждую цепочку. После того как раздвоится генетическая спираль, начинает делиться ядро и все органеллы, а затем и вся клетка.

Но у человека другой процесс передачи генов - половой. Признаки отца и матери перемешиваются, в новом генетическом коде содержится информация от обоих родителей.

Хранение и передача наследственной информации возможны благодаря сложной организации спирали ДНК. Ведь как мы говорили, структура белков зашифрована именно в генах. Раз создавшись во время зачатия, этот код на протяжении всей жизни будет копировать сам себя. Кариотип (личный набор хромосом) не изменяется во время обновления клеток органов. Передача же информации осуществляется с помощью половых гамет — мужских и женских.

Передавать свою информацию потомству не способны только вирусы, содержащие одну цепочку РНК. Поэтому, чтобы воспроизводиться, им нужны клетки человека или животного.

Реализация наследственной информации

В ядре клетки постоянно происходят важные процессы. Вся информация, записанная в хромосомах, используется для построения белков из аминокислот. Но цепочка ДНК никогда не покидает ядро, поэтому здесь нужна помощь другого важного соединения = РНК. Как раз РНК способно проникнуть через мембрану ядра и взаимодействовать с цепочкой ДНК.

Посредством взаимодействия ДНК и 3 видов РНК происходит реализация всей закодированной информации. На каком уровне происходит реализация наследственной информации? Все взаимодействия происходят на уровне нуклеотидов. Информационная РНК копирует участок цепи ДНК и приносит эту копию в рибосому. Здесь начинается синтез из нуклеотидов новой молекулы.

Для того чтобы иРНК могла скопировать необходимую часть цепи, спираль разворачивается, а затем, по завершении процесса перекодировки, снова восстанавливается. Причем этот процесс может происходить одновременно на 2 сторонах 1 хромосомы.

Принцип комплементарности

Состоят из 4 нуклеотидов — это аденин (А), гуанин (G), цитозин (С), тимин (T). Соединены они водородными связями по правилу комплементарности. Работы Э. Чаргаффа помогли установить это правило, так как ученый заметил некоторые закономерности в поведении этих веществ. Э. Чаргафф открыл, что молярное отношение аденина к тимину равно единице. И точно так же отношение гуанина к цитозину всегда равно единице.

На основе его работ генетики сформировали правило взаимодействия нуклеотидов. Правило комплементарности гласит, что аденин соединяется только с тимином, а гуанин - с цитозином. Во время декодирования спирали и синтеза нового белка в рибосоме такое правило чередования помогает быстро найти необходимую аминокислоту, которая прикреплена к транспортной РНК.

РНК и его виды

Что такое наследственная информация? нуклеотидов в двойной цепи ДНК. А что такое РНК? В чем заключается ее работа? РНК, или рибонуклеиновая кислота, помогает извлекать информацию из ДНК, декодировать ее и на основе принципа комплементарности создавать необходимые клеткам белки.

Всего выделяют 3 вида РНК. Каждая из них выполняет строго свою функцию.

  1. Информационная (иРНК) , или еще ее называют матричная. Она заходит прямо в центр клетки, в ядро. Находит в одной из хромосом необходимый генетический материал для постройки белка и копирует одну из сторон двойной цепи. Копирование происходит снова по принципу комплементарности.
  2. Транспортная — это небольшая молекула, у которой на одной стороне декодеры-нуклеотиды, а на другой стороне соответствующие основному коду аминокислоты. Задача тРНК — доставить в «цех», то есть в рибосому, где синтезирует необходимую аминокислоту.
  3. рРНК — рибосомная. Она контролирует количество белка, который продуцируется. Состоит из 2 частей — аминокислотного и пептидного участка.

Единственное отличие при декодировании — у РНК нет тимина. Вместо тимина тут присутствует урацил. Но потом, в процессе синтеза белка, при ТРНК все равно правильно устанавливает все аминокислоты. Если же происходят какие-то сбои в декодировании информации, то возникает мутация.

Репарация поврежденной молекулы ДНК

Процесс восстановления поврежденной двойной цепочки называется репарацией. В процессе репарации поврежденные гены удаляются.

Затем необходимая последовательность элементов в точности воспроизводиться и врезается обратно в то же место на цепи, откуда было извлечено. Все это происходит благодаря специальным химическим веществам — ферментам.

Почему происходят мутации?

Почему некоторые гены начинают мутировать и перестают выполнять свою функцию — хранение жизненно необходимой наследственной информации? Это происходит из-за ошибки при декодировании. Например, если аденин случайно заменен на тимин.

Существуют также хромосомные и геномные мутации. Хромосомные мутации случаются, если участки наследственной информации выпадают, удваиваются либо вообще переносятся и встраиваются в другую хромосому.

Геномные мутации наиболее серьезны . Их причина - это изменение числа хромосом. То есть когда вместо пары — диплоидного набора присутствует в кариотипе триплоидный набор.

Наиболее известный пример триплоидной мутации — это синдром Дауна, при котором личный набор хромосом 47. У таких детей образуется 3 хромосомы на месте 21-й пары.

Известна также такая мутация, как полиплодия. Но полиплодия встречается только у растений.

Похожие публикации